City traffic forecasting using taxi GPS data: A coarse-grained cellular automata model
نویسندگان
چکیده
City traffic is a dynamic system of enormous complexity. Modeling and predicting city traffic flow remains to be a challenge task and the main difficulties are how to specify the supply and demands and how to parameterize the model. In this paper we attempt to solve these problems with the help of large amount of floating car data. We propose a coarse-grained cellular automata model that simulates vehicles moving on uniform grids whose size are much larger compared with the microscopic cellular automata model. The car-car interaction in the microscopic model is replaced by the coupling between vehicles and coarse-grained state variables in our model. To parameterize the model, flux-occupancy relations are fitted from the historical data at every grids, which serve as the coarse-grained fundamental diagrams coupling the occupancy and speed. To evaluate the model, we feed it with the historical travel demands and trajectories obtained from the floating car data and use the model to predict road speed one hour into the future. Numerical results show that our model can capture the traffic flow pattern of the entire city and make reasonable predictions. The current work can be considered a prototype for a model-based forecasting system for city traffic.
منابع مشابه
Using coarse GPS data to quantify city-scale transportation system resilience to extreme events
This article proposes a method to quantitatively measure the resilience of transportation systems using GPS data from taxis. The granularity of the GPS data necessary for this analysis is relatively coarse; it only requires coordinates for the beginning and end of trips, the metered distance, and the total travel time. The method works by computing the historical distribution of pace (normalize...
متن کاملAnalysis and Visualization for Hot Spot Based Route Recommendation Using Short-Dated Taxi GPS Traces
Taxi GPS traces, which contain a great deal of valuable information as regards to human mobility and city traffic, can be extracted to improve the quality of our lives. Since the method of visualized analysis is believed to be an effective way to present information vividly, we develop our analysis and visualization method based on a city’s short-dated taxi GPS traces, which can provide recomme...
متن کاملRevealing daily travel patterns and city structure with taxi trip data
Detecting regional spatial structures based on spatial interactions is crucial in applications ranging from urban planning to traffic control. In the big data era, various movement trajectories are available for studying spatial structures. This research uses large scale Shanghai taxi trip data extracted from GPS-enabled taxi trajectories to reveal traffic flow patterns and urban structure of t...
متن کاملDeep Multi-View Spatial-Temporal Network for Taxi Demand Prediction
Taxi demand prediction is an important building block to enabling intelligent transportation systems in a smart city. An accurate prediction model can help the city pre-allocate resources to meet travel demand and to reduce empty taxis on streets which waste energy and worsen the traffic congestion. With the increasing popularity of taxi requesting services such as Uber and Didi Chuxing (in Chi...
متن کاملUrban Population Migration Pattern Mining Based on Taxi Trajectories
Understanding urban population migration patterns is very helpful for urban operation and management, including the traffic forecasting, epidemic prevention, commercial resource allocation, emergency response and future urban planning. The large taxi fleet equipped with GPS comprises ubiquitous mobile probes in urban areas, and their trajectories reveal interesting phenomena in the city. We inv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1612.02540 شماره
صفحات -
تاریخ انتشار 2016